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Abstract. The Wigner and Husimi distributions are the usual phase space representations of a quantum
state. The Wigner distribution has structures of order �

2. On the other hand, the Husimi distribution is
a Gaussian smearing of the Wigner function on an area of size � and then, it only displays structures of
size �. We have developed a phase space representation which results a Gaussian smearing of the Wigner
function on an area of size �

σ, with σ ≥ 1. Within this representation, the Husimi and Wigner functions are
recovered when σ = 1 and σ � 2 respectively. We treat the application of this intermediate representation
to explore the semiclassical limit of quantum mechanics. In particular we show how this representation
uncover semiclassical hyperbolic structures of chaotic eigenstates.

PACS. 05.45.Mt Quantum chaos; semiclassical methods – 03.65.Sq Semiclassical theories and applications

From the origin of quantum theory different representa-
tions of it were extensively studied in the literature. In
particular, a phase space representation appears as the
natural selection in the fundamental problem of the semi-
classical limit of quantum mechanics [1,2]. A phase space
description of quantum mechanics will indeed show most
clearly classical features, as the phase space is the context
where classical mechanics naturally emerges. For instance,
quantum manifestations of chaos are clearly observed in
the Wigner [3] or Husimi distributions [4].

Although Wigner and Husimi distributions contain all
the information of a quantum state, they display differ-
ent characteristics. The Wigner function shows big oscil-
lations with negative value which distinguish it from a
classical probability density. For instance, on a compact
phase space of area A, it develops fine structures on a sub-
Planck scale of order �

2/A [5]. These sub-Planck struc-
tures are manifestations of quantum interferences from
distant localized objects and enhance the sensitivity of
a state to perturbations [5–7]. On the other hand, the
Husimi function is a Gaussian smearing of the Wigner
function on an area of size � that washes out the neg-
ative part and hence it is suitable as a probability den-
sity. However, this smoothing hides important structures
such as semiclassical hyperbolic structures embedded in
chaotic eigenfunctions [8]. In synthesis, the Wigner func-
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tion displays high resolution but it is not free of long range
quantum interferences, while the Husimi function that
washes out quantum interferences also hides important
semiclassical structures. This implies the need for a phase
space representation of quantum mechanics that is able
to explore intermediate regimes. This is the case of the
s-parametrized quasi-distribution originally introduced by
Cahill and Glauber [9]. A tool that is widely used in op-
tics (see for example [10]) but ignored by the semiclassical
community. In this paper, we insert the s-parametrized
quasi-distribution into the powerful formalism of reflec-
tion operators [15], this allows to show that intermedi-
ate smoothening of the Wigner function are good repre-
sentations of quantum mechanics. We then illustrate the
usefulness of this representation to resolve semiclassical
structures, for this purpose we show how this smearing
is relevant to describe the scarring phenomenon, one of
the most important problems in quantum chaos [11,12].
The formalism is presented for the case of a plane phase
space with one degree of freedom, the extension for several
degrees of freedom is straightforward and the technical de-
tails regarding the topology of a cylindrical phase space
will be presented elsewhere [13].

In what follows, we will work with adimensional vari-
ables p, q and � . With this purpose, we measure all the
physical magnitudes in units of the characteristic values
of the problem [14]. Among the several representations of
quantum mechanics, the Weyl-Wigner representation is
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the one that performs a decomposition of the operators
that acts on the Hilbert space, on the basis formed by
the set of unitary reflection operators R̂x of center point
x = (q, p) in phase space (see [15]). The set of reflection
operators, are formally defined in [15] as the Fourier trans-
form of the translation (or Heisenberg) operators. Their
action on the coordinate and momentum bases are

R̂x |qa〉 = e2i(q−qa)p/� |2q − qa〉
R̂x |pa〉 = e2i(p−pa)q/� |2p− pa〉 ,

displaying the interpretation of these operators as reflec-
tions in phase space.

This family of operators have the properties that they
are a decomposition of the unity (completeness relation)
and satisfy an orthogonality relation

1̂ =
1

2π�

∫
dxR̂x,

Tr
[
R̂x1R̂x2

]
= 2π�δ(x2 − x1). (1)

Hence, an operator Â can be decomposed in terms of re-
flection operators as follows

Â =
1

2π�

∫
dxAW (x)R̂x.

With this decomposition, the operator Â is mapped on a
function AW (x) living in phase space, the so called Weyl-
Wigner symbol of the operator. Using (1) it is easy to show
that AW (x) can be obtained by performing the following
trace operation

AW (x) = Tr
[
R̂xÂ

]
.

Of course, as it is shown in [15], the Weyl symbol also
takes the usual expression in terms of matrix elements of
Â in coordinate representation

AW (x) =
∫ 〈

q − Q

2

∣∣∣∣ Â
∣∣∣∣q +

Q

2

〉
exp

(
− i

�
pQ

)
dQ.

On the other side, instead of using reflection operators,
the Husimi representation is related with the expansion
of operators in terms of the set of projectors on coherent
states ρ̂X = |X〉 〈X | [16,17], where |X〉 is the coherent
state centered at the point X = (Q,P )

〈q |X〉 =
( ω

π�

)1/4

exp
[
− ω

2�
(q −Q)2 − i

�
Pq

]
.

The parameter ω stands for the form factor since the
dispersions ∆q =

√
�/2ω and ∆p =

√
�ω/2 satisfy

∆p/∆q = ω, while the product ∆q∆p = �/2 displays the
least uncertainty independently of ω.

As for the reflection operators, the set of projectors
ρ̂X also form a decomposition of the unity

1̂ =
1

2π�

∫
dXρ̂X

where dX ≡ dPdQ. Nevertheless, they are not orthogonal
since their traces satisfy (see [16])

Tr [ρ̂X′ ρ̂X ] = |〈X ′|X〉|2 = 2π�G2�(X ′ −X),

where we have used the following definition for a Gaussian
distribution in phase space

Gα(X ′ −X) ≡
1
πα

exp
{
− 1
α

[
ω (Q′ −Q)2 +

1
ω

(P ′ − P )2
]}
.

Now, by expanding Â in terms of the projectors ρ̂X

Â =
1

2π�

∫
dXÃH(X)ρ̂X , (2)

the operator is mapped on the function ÃH(X), the so
called contravariant symbol of the operator. Moreover, by
taking the trace operation we get the covariant symbol

AH(X) = Tr
[
|X〉 〈X | Â

]
= 〈X | Â |X〉 , (3)

which is known as the Husimi representation of the op-
erator. The covariant and contravariant symbols are not
identical in the coherent states representation. Replacing
(2) in (3) we find that they are related by the following
expression

AH(X) =
1

2π�

∫
dX ′ÃH(X ′)Tr [ρ̂X ρ̂X′ ]

=
∫
dX ′ÃH(X ′)G2�(X −X ′). (4)

It is clear that the contravariant symbol ÃH(X) contains
all the information on the operator Â since it performs a
decomposition on a complete basis. However, for the co-
variant symbol AH(X), the Gaussian smoothing of the
contravariant one (see (4)) could produce some loss of in-
formation. It is only the special analytical properties of
AH(X) [18] that ensures that this symbol contains all the
information on Â.

It is also possible to obtain the covariant symbol
AH(X) from the Weyl symbol AW (x). For this purpose,
we need to use the Wigner function of a coherent state
|X〉 that takes the form (see [15])

ρX(x) = Tr
[
R̂xρ̂X

]
= 2�πG�(X − x).

Then, the coherent state projectors can be written in
terms of reflection operators as follows

ρ̂X =
1

2π�

∫
dxR̂xρX(x) =

∫
dxR̂xG�(X − x), (5)

that is, as a Gaussian smoothing on an area of size �.
Finally, we obtain AH(X) = Tr[ρ̂XÂ] =

∫
dxG�(X −

x)AW (x), showing that the Husimi representation is a
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Gaussian smoothing of the Wigner function on an area
of size �.

Let us now define, analogously to (5), a new set of
operators ÔσX , that we will call Smoothed Reflection (SR)
operators. This new set is obtained as a Gaussian smooth-
ing from the reflection operators on an area of size �

σ

ÔσX =
∫
dxR̂xG�σ (X − x).

For σ = 1 we recover the coherent state projectors Ô1
X =

ρ̂X (see (5)), while for σ → ∞ the Gaussian distribution
leads to a delta distribution and Ôσx → R̂x. Moreover using
(1), the set of SR operators results a decomposition of the
unity

1
2π�

∫
ÔσXdX = 1̂,

and the trace of two SR operators leads to

Tr
[
ÔσX1

ÔσX2

]
=

∫
dx1dx2Tr

[
R̂x1R̂x2

]

×G�σ (X1 − x1)G�σ (X2 − x2).

Using the orthogonality relation (1) in order to integrate
the x2 variable, and performing the resulting Gaussian
integral with the following easily verifiable property

Ga1+a2(X −X ′) =
∫
dxGa1 (X − x)Ga2(x−X ′), (6)

there results

Tr
[
ÔσX1

ÔσX2

]
= 2π�G2�σ (X1 −X2). (7)

As for the coherent state representation, the decomposi-
tion of an operator Â in terms of the set of operators ÔσX
defines the contravariant SR symbol Ãσ(X)

Â =
1

2π�

∫
dXÃσ(X)ÔσX .

On the other hand, the trace operation defines the covari-
ant symbol, which can be obtained from the Weyl repre-
sentation as a Gaussian smoothing on an area of size �

σ

Aσ(X) = Tr
[
ÔσX Â

]
=

∫
dxG�σ (X − x)AW (x).

Using (7), the relation between covariant and contravari-
ant symbols in the SR representation results

Aσ(X) =
1

2π�

∫
dX ′Ãσ(X ′)Tr

[
ÔσX Ô

σ
X′

]

=
∫
dX ′Ãσ(X ′)G2�σ (X −X ′).

Also, knowing the covariant SR symbol for �
σ < �, the

Husimi covariant symbol is obtained as follows

AH(X) =
∫
dxG�(X − x)AW (x)

=
∫
dX ′G�−�σ (X −X ′)Aσ(X ′), (8)

where in the last equality we have used (6).

The completeness of the covariant SR symbol is ob-
tained through its ability to recover the Husimi sym-
bol (8). Although a smoothing of the Wigner symbols
could imply a loss of information, the special analytical
properties of the Husimi representation, as we already
mentioned, contains all the information on the operator.
Relation (8) implies that the Husimi symbol can be ob-
tained from the SR covariant symbol by performing a
Gaussian smoothing on a phase space region of size �−�

σ,
when �

σ ≤ �. This shows that the covariant SR symbol
contains all the information on the operator. Nevertheless,
for values of σ such that �

σ > �, we cannot obtain a re-
lation like (8), so in this case the completeness of the SR
symbol is not guaranteed.

In the original paper by Cahill and Glauber [9] the
smoothing of the Wigner function was labeled by the com-
plex number s. In this paper, instead, we have used �

σ to
explicitly show the broadening of the Wigner function in
terms of the Planck constant. In order to translate both
formalisms, our scheme is equivalent to take a �(s) = 0
and �(s) = −�

σ−1.

In summary, we have described the representation of
quantum mechanics associated with a sub-Planck smear-
ing of the Wigner function in the formalism of reflection
operators in phase space. In what follows, we will illus-
trate the usefulness of this representation for the study of
the semiclassical limit of quantum mechanics. As we have
already mentioned, the Wigner or Husimi representations
suffers for different pathologies in order to correctly resolve
semiclassical structures. The Wigner function presents
quantum interference between distant localized objects [5],
while the Husimi function washes out the interference but
only resolves objects on an area of size � hiding lower scale
semiclassical structures [8]. So it is natural to think that
a compromise solution where a smoothing of the Wigner
function is performed, in an area of size lower than �,
would be more appropriated.

One of the most important problems in quantum chaos
is to understand how the classical orbits and their stability
structure let imprints in quantum mechanics. In particu-
lar, the scarring phenomenon appears when the probabil-
ity density is enhanced along unstable periodic orbits.

In order to show the usefulness of the smoothed
Wigner function to resolve semiclassical structures, we
apply the intermediate smoothing representation to un-
cover hyperbolic structures present in the eigenfunctions
of the Bunimovich stadium billiard. This system is fully
chaotic and has great theoretical and experimental rel-
evance [19–21]. It consists of a free particle inside a
2-dimensional planar region whose boundary is shown in
Figure 1.

In Figure 1a we show the coordinate representation of
an excited state |ψ〉 which presents an important scarring
on the bowtie orbit and contribution of an orbit near the
bouncing ball region. Both orbits are shown in Figure 1b.

Figures 2a–2d show the smoothed reflection represen-
tation of the density operator ρ̂ψ = |ψ〉 〈ψ| in Birkhoff [22]
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(a)

(b)

Fig. 1. The desymmetrized Bunimovich stadium billiard, with
radius r taken equal to unity and enclosed area 1 + π/4. In
panel (a) the linear density plot in configuration space (posi-
tion representation) of |ψ〉 is shown for the state with wave
number k = 100.255. While in panel (b) two relevant orbits
are displayed, the bowtie orbit in full line and an orbit near
the bouncing ball region in dashed lines.

1

0
0 1q

p

(b)

(c) (d)

(a)

Fig. 2. Phase space representations ρψσ (p, q) of the state with
wave number k = 100.255 for the desymmetrized Bunimovich
stadium billiard. The parameter σ = 2.25, 1.75, 1.165 and 1 for
panels (a), (b), (c) and (d).The plotting convention is that for
each panel a linear gray scale is used such that the maximum
of the distribution is denoted in black, while white color is used
for the minimum. In the up right corner of each panel a black
square of size �

σ is drawn. This square is too small to be noted
in panels (a) and (b). In panel (c) the full white lines represents
the stable and unstable manifolds for the bowtie orbit and for
the orbit near the bouncing ball region described in Figure 1b.

coordinates, with

ρψσ (p, q) = Tr
[
ÔσX ρ̂

ψ
]

= Tr
[
ÔσX |ψ〉 〈ψ|

]

=
∫
dxG�σ (X − x)ρψW (x), (9)

and σ = 2.25, 1.75, 1.165 and 1 respectively. The plotting
convention is that for each panel a linear gray scale is used
such that the maximum of the distribution is denoted in
black, while white color is used for the minimum. It has to
be noted that, the distributions plotted takes positive and
negative values, except for Figure 2d that describes the
positively defined Husimi distribution.As it was mentioned
before, the finest structures of the Wigner function are

of size �
2 [5], so ρψσ (p, q) practically results the Wigner

function for σ = 2.25 (see Fig. 2a).
A chaotic eigenfunction is semiclassically constructed

by the sum of contributions of all periodic orbits with pe-
riod up to around the Ehrenfest time [23]. Moreover, the
Wigner function of each contribution consists of long range
hyperbolic fringes asymptotic to the stable and unstable
manifolds [8]. Nevertheless, it is difficult to observe these
hyperbolic patterns in the Wigner function of a chaotic
eigenfunction because the characteristic fringe patterns
highly interfere. For this reason, the hyperbolic structure
of individual periodic orbits is poorly seen in Figure 2a.
On the other hand, the Husimi distribution correspond-
ing to σ = 1 washes out localization on the stable and
unstable manifolds of the bowtie orbit as it is shown in
Figure 2d. Finally, for intermediate values of σ (Figs. 2b
and 2c) the interference is dampened, and regions of hight
intensity of the distribution locate along the manifolds. In-
deed in Figure 2c it is also possible to distinguish regions
of hight intensity located along the hyperbolic structure of
the orbit near the bouncing ball region previously shown
in Figure 1b.

The previous mentioned discrepancies among differ-
ent smoothness result essential for studying the scar phe-
nomenon. It was shown recently [24] that by using hyper-
bolic structures in order to measure localization on short
periodic orbits, the scar phenomenon survive the semiclas-
sical limit. This means that the sum of scarred intensities
of a generic chaotic eigenfunction takes in this limit a non
null value which only depends on classical invariants of
the system. On the contrary, by using wave packets in the
transverse direction to the motion (for instance, the co-
herent states used in the Husimi distribution), the sum of
scarred intensities tends to zero in the semiclassical limit.
The consequences of these results for our particular exam-
ple should be interpreted as follows. In Figures 2c and 2d
we observe that the maxima of the distributions are lo-
cated near fixed points associated to periodic orbits. Such
correspondence should survive the semiclassical limit for
an adequate intermediate distribution that washes out the
long range fringes of the Wigner but which any way dis-
plays the hyperbolic structure along the manifolds. On
the other hand, the maxima of the Husimi distribution
should be of pure quantum nature in the semiclassical
limit, and we do not expect any correspondence with clas-
sical objects.

As another example of the potential use of these inter-
mediate representations, we mention that the same kind
of smoothing is shown to occurs in the context of decoher-
ence [25]. In that case, the smoothing of the Wigner func-
tion is a natural consequence of time evolution because
of the presence of decoherence. As a matter of fact, the
time decohered Wigner function is a Gaussian smoothing
of the original one, so that the quantum interference dis-
appear and the classical structures emerge. While, in [26]
the smoothed reflection operators are used to generate de-
coherence at each step of the quantum map.

In conclusion, we have described a one parameter fam-
ily of phase space representations of quantum mechanics
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that has the Wigner and Husimi representations as ex-
tremes cases. But also it is able to explore intermediate
resolutions for the purpose of enhancing the quantal res-
olution of the Husimi function or to dampen interference
effects of the Wigner representation. We have shown that
this is a good representation of quantum mechanics in the
sense that it contains all the information of the states,
and we performed its description in the modern language
of smoothed reflection operators in phase space. Also, we
have shown the usefulness of this representation to resolve
semiclassical structures in quantum mechanics. In particu-
lar it permits to better visualize the scarring phenomenon,
distinguishing periodic points with its stable and unstable
manifolds. This is particularly useful for futures studies in
a better understanding of the semiclassical limit of quan-
tum mechanics.

We would like to thanks Marcos Saraceno and Alfredo M.
Ozorio de Almeida for fruitful discussions and suggestions. We
acknowledge financial support from Conicet.
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